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The direct methods origin-free modulus sum function [Rius (1993). Acta Cryst.

A49, 406–409] includes in its definition the structure factor G(�) of the squared

crystal structure expressed in terms of �, the set of ’ phases of the normalized

structure factors E’s of the crystal structure of unit-cell volume V. Here the

simpler sum function variant S0P =
P

H E�H

R
V �P,�(�)exp(i2�Hr) dV extended

over all H reflections is introduced which involves no G’s and in which the �P,�

function corresponds to �P = FT�1{(E2
H � hE

2i)exp[i’H(�)]} (where FT =

Fourier transform) with all values smaller than � = 2.5�P equated to zero (�2
P is

the variance of �P calculable from the experimental intensities). The new phase

estimates are obtained by Fourier transforming �P,�. This iterative phasing

method (� recycling) only requires calculation of Fourier transforms at two

stages. Since �M ’ �P/2, similar arguments are valid for �M = FT�1[(EH �

hEi)exp(i’H)] from which the corresponding S0M phasing function follows.

1. Introduction

A simple way of formulating the direct methods origin-free

modulus sum function is through the introduction of the �sq
M

Fourier synthesis

�sq
M r;�ð Þ ¼

1

V

X
H

GH � Gh ið Þ exp i H �ð Þ
� �� �

exp �i2�Hrð Þ

ð1Þ

extended over all H reflections. For a P1 crystal structure with

N equal atoms in the unit cell of volume V, the quantities

involved in the �sq
M definition are as follows:

EK and ’K are the amplitude and unknown phase value of

the normalized structure factor E for reflection K. E2
K is

directly related to the squared structure-factor amplitude F2
K

by the expression E2
K ¼ F2

K=ðNf 2
KÞ where fK is the atomic

scattering factor affected by thermal vibration. Hence EK can

be considered the experimental E value.

�(r,�) is the density distribution at an arbitrary point r of

the unit cell given in terms of the set � of phases of the E’s.

GK is the amplitude of the structure factor of the squared

point-like equal-atom structure, �2, which is accessible from

the experimental EK and from the known N by means of GK =

EK/N1/2. Similarly to EK, GK represents the experimental G.

The hEi, hE2
i, hGi and hG2

i quantities appearing in the various

� Fourier syntheses described in this paper are experimental

averages over the full set.

GK(�) is the structure factor of �2(r,�) with amplitude and

associated phase given by GK(�) and  K �ð Þ, respectively.

By making use of �sq
M r;�ð Þ, the direct methods origin-free

modulus sum function (Rius, 1993; Rius et al., 2007) takes the

form

SM ¼
P
K

E�K expði’�KÞ

�
R
V

�sq
Mðr;�Þ�ðr;�Þ expði2�KrÞ dV

¼
P
K

E�K expði’�KÞQKð�Þ: ð2Þ

Phase refinement is carried out by maximizing SM. As new ’K

estimates the angular parts of the corresponding QK(�) are

taken. Closely related to SM is the recently developed SP

phasing function which explores the Patterson function of the

squared structure instead of the modulus function (Rius,

2011a). SP is obtained by replacing in equation (2) �sq
M by

�sq
P r;�ð Þ ¼

1

V

X
H

G2
H � G2

� �� 	
exp i H �ð Þ

� �� �
exp �i2�Hrð Þ:

ð3Þ

Since SP works with intensities, it is especially well suited for

dealing with powder diffraction data. The aim of this article is

to investigate the possibility of refining phases with variants of

SM and SP not using the  (�) phases of the squared structure.

2. The dP (dM) synthesis

The �P synthesis is defined by

�PðrÞ ¼
1

V

X
H

E2
H � E2

� �� 	
exp i’Hð Þ

� �
exp �i2�Hrð Þ ð4Þ

where the E2
H � hE

2
i are the Fourier coefficients of the origin-

free Patterson function (P0) and where exp(i’H) are the

coefficients of the phase synthesis (�’). According to Rama-

chandran & Srinivasan (1970) �’ and � have peaks of similar

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zm5090&bbid=BB25


strength at the rj atomic positions ( j = 1, N). Besides the peaks

at atomic positions, �’ also shows background peaks. Since �P

corresponds to the convolution of �’ with P0, �P has large

maxima at r values coincident with atomic vectors and a

certain noise/background in the rest of the unit cell. The value

of �P at atomic positions is [equation (23)],

�PðrkÞ ¼ �ðrkÞ Eh i � f 2
k�’ðrkÞ ð5Þ

where fk is the normalized scattering factor of atom k. That the

negative term in equation (5) can be neglected is readily

verified for an equal-atom structure. In this case f 2
k is equal to

1/(N1/2)2 and since it is known that �’ðrkÞ and �ðrkÞ are similar,

the negative term is approximately �(rk)/N, i.e. much smaller

than the positive one. Consequently,

�PðrkÞ ’ �ðrkÞ Eh i: ð6Þ

Similarly, the �M synthesis is defined by

�MðrÞ ¼
1

V

X
H

EH � Eh ið Þ exp i’Hð Þ
� �

exp �i2�Hrð Þ: ð7Þ

The only difference between �P and �M is the substitution of

E2
� hE2

i by E� hEi, i.e. the introduction of the coefficients of

the origin-free modulus function, M0. Both M0 and P0 contain,

each one, N2
� N peaks at the ends of the rk � rl interatomic

vectors (k 6¼ l). The respective approximate peak strengths

are fkfl /2 and fkfl, so that one may assume P0(r) ’ 2M0(r)

(Ramachandran & Srinivasan, 1970). In view of this result and

by expressing �P as the convolution of �’ with P0, the mathe-

matical relationship between �P and �M at an arbitrary r is

�PðrÞ ¼
R
V

�’ðuÞP
0ðr� uÞ du

’ 2
R
V

�’ðuÞM
0ðr� uÞ du ¼ 2�MðrÞ: ð8Þ

Combining equation (8) with equation (6) yields the value of

�M at the k atomic position,

�MðrkÞ ’ �ðrkÞ
Eh i

2
: ð9Þ

2.1. Variance of dP (dM)

The variance of a given �(r) density function with structure-

factor amplitudes CH is (see Appendix B)

�2
� ¼

1

V2

X
H6¼0

C2
H: ð10Þ

Replacement of CH by E2
� hE2

i in the case of �P and by

E � hEi for �M leads to the respective variances

�2
P ¼

1

V2

X
H 6¼0

E2
H � E2

� �� 	2
¼

NH

V2
E4
� �
� E2
� �2
 �

; ð11Þ

�2
M ¼

1

V2

X
H6¼0

EH � Eh ið Þ
2
¼

NH

V2
E2
� �
� Eh i2

� 	
ð12Þ

from which the experimental �P/�M value can be derived. For

a P1 equal-atom structure the calculated �P/�M quotient is

2.16, since hE4
i = 2, hE2

i = 1 and hEi = 0.886 from the theory of

intensity statistics. Notice that �2
P and �2

M are phase indepen-

dent. In this connection it should be mentioned that Giacov-

azzo & Mazzone (2011) and Giacovazzo et al. (2011) have

recently shown how to calculate the variance of a map at

different stages of the phasing process.

2.2. Evolution of d/r with data resolution

Of practical interest is the evolution of the �P/�P ratios at

different data resolutions. The ratio at the peak centre r of an

arbitrary k atom may be estimated with

�PðrkÞ

�P

’
Eh i

E4h i � E2h i
2

� 	1=2

NH

N

� 1=2

; ð13Þ

which follows from equations (6) and (11) under consideration

of the well known expression, �(rk) = (1/N1/2)(NH/V). Simi-

larly, in view of equations (9) and (12), the ratio for �M

becomes

�MðrkÞ

�M

’
Eh i

2 E2h i � Eh i2
� 	1=2

NH

N

� 1=2

: ð14Þ

Since the left factors in equations (13) and (14) are both close

to 1, the respective �/� ratios are similar.

2.3. Application of the positivity constraint

It has been shown that �P essentially corresponds to the

hEi� product and that its variance, �2
P, only depends on the

amplitudes derived from experiment. The simplest way to

impose the positivity condition on �P is by equating to zero all

�P values below � = 2.5�P. Hereafter, to distinguish between

constrained and unconstrained �P, the former will be denoted

�P,�. The same arguments hold for �M, and the corresponding

constrained function will be called �M,�.

It is clear that the positivity condition cannot be applied to

�P if � contains positive and negative scatterers. In such cases,
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Figure 1
Phase refinement by �P recycling. (Top) Initial (or updated) phase
estimates are used to compute �P; (middle) �P values are compared with
� = 2.5�P to impose positivity, thus leading to the constrained �P,�;
(bottom) new structure-factor estimates are obtained by Fourier
transforming �P,�. CC measures the correlation between observed and
new amplitudes. Refinement continues until convergence is reached. This
algorithm is also valid for �M, the principal difference being substitution
of E2

� hE2
i by E � hEi.



the possibility still exists to impose the peaked nature of � by

equating to zero all absolute values of �P smaller than �.

3. The SP
000 (SM

000) sum function: the d recycling method

The proposed variant of the direct methods sum function

S0P ¼
P
H

E�H expði’�HÞ
� � R

V

�P;�ðrÞ exp i2�Hrð Þ dV ð15Þ

results from replacing in SP the ��sq
P product by the �P,�

function. Similarly to SP or SM, phase refinement is carried out

maximizing S0P, i.e. the angular part of the Fourier transform

’new
H ¼ phase of

R
V

�P;�ðrÞ exp i2�Hrð Þ dV

� �
ð16Þ

is taken as the new phase estimate (Rius et al., 2007).

The Fourier transforms can be calculated simultaneously by

means of the fast Fourier transform (FFT) algorithm.

However, if the atomicity condition applies, a combination of

�M,� peak search with subsequent structure-factor calculation

constitutes a fast and efficient alternative. This second

procedure is the one that has been employed in the test

calculations for obtaining the new ’ values. The updated � is

then used for calculating the new �P(�) and �P,�(�) syntheses.

This cyclic process (� recycling) continues until the correlation

coefficient between experimental and calculated amplitudes,

CC ¼

P
H EH � EH �ð Þ

� �2P
H EH

2 �
P

H EH �ð Þ2

( )1=2

; ð17Þ

indicates that convergence is reached (Fig. 1). By analogy to

S0P, the corresponding sum function based on �M,�,

S0M ¼
P
H

E�H expði’�HÞ
� � R

V

�M;�ðrÞ exp i2�Hrð Þ dV; ð18Þ

can be introduced, which can be maximized by applying the

tangent formula

’new
H ¼ phase of

R
V

�M;�ðrÞ expði2�HrÞ dV

� �
ð19Þ

embedded in the � recycling method described in Fig. 1.

4. Test calculations

In Table 1 the theoretical and experi-

mental values of some relevant para-

meters of the �P and �M syntheses are

compared. To this purpose MBH2, a

nearly equal-atom crystal structure

representing the ideal case, was selected

(unit-cell contents C45H72O9, i.e. N = 54;

V = 1106.2 Å3; space-group symmetry

P1) (Poyser et al., 1986). The measured

single-crystal intensity data reach

atomic resolution (minimum d spacing =

0.85 Å, NH = 7526 reflections) and the

corresponding experimental hE4
i, hE2

i

and hEi values are 2.233, 1 and 0.871,

respectively. The results listed in Table 1

confirm that:

(i) The (�/�) ratios decrease with

decreasing data resolution. In general

(�/�) ratios higher than 6 for P0 or 7 for

M0 are necessary for successful � recy-

cling of purely organic compounds. This

corresponds to a minimum d spacing of

1.15 Å. At this resolution a slight

degradation of the CC figure of merit

begins to occur.
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Table 1
Relevant parameters of �P (�M) synthesis at three different data
resolutions specified by the smallest d spacing, dmin.

NH: number of reflections; �P (�M): standard deviation of the � synthesis; �P

(�M): (a) theoretical � value at atomic positions and (b) refined value of largest
� peak; �P/�P (�M/�M): experimental ratio derived from equation (13)
[equation (14)]; CCP (CCM): correlation coefficient computed with equation
(17).

dmin (Å) NH �P (Å�3) �P (a) �P (b) �P/�P CCP

0.85 7526 0.08707 0.807 0.867 (45) 9.27 0.900 � 2
1.00 4624 0.06559 0.501 0.565 (45) 7.64 0.893 � 3
1.15 3050 0.05334 0.331 0.397 (36) 6.20 0.874 � 4

dmin (Å) NH �M (Å�3) �M (a) �M (b) �M/�M CCM

0.85 7526 0.03849 0.403 0.419 (49) 10.45 0.894 � 4
1.00 4624 0.02915 0.250 0.269 (16) 8.59 0.897 � 3
1.15 3050 0.02360 0.165 0.194 (12) 7.01 0.875 � 4

Table 2
Direct phasing by �P and �M recycling of several sets of intensity data.

Inspection of the table indicates that both �P and �M recycling procedures show similar behaviour. CCP and
CCM measure the correlation between observed and refined amplitudes. nT specifies the trial at which the
solution has been found with the elapsed time (min) in parentheses (DELL Precision PWS390 PC, Intel
core CPU, 6700 @ 2.66 GHz and 2.00 GB RAM). Number of refinement cycles per trial is always 100
except for SUOA (200).

Compound
code

Space
group

Atoms in
asymmetric
unit (no H)

dmin

(Å) CCP

(�P)
nT (min) CCM

(�M)
nT (min)

Tvala P1 256 0.85 0.90 1 (0.5) 0.90 1 (0)
Rubredoxinb P21 452 + 1Fe 1.00 0.88 1† (8.5) 0.88 1† (9)
Winter2c P21 82 + 2Cl 0.84 0.88 1 (1) 0.89 1 (0.5)
Tpalad P21 39 0.85 0.87 1 (0) 0.89 1 (0.5)
Goldman2e Cc 56 0.76 0.90 2 (1) 0.89 3 (2.5)
Munich1f C2 40 0.89 0.90 26 (4.5) 0.90 13 (2.5)
Appg C2 300 + 1Zn 0.99 0.88 1† (2) 0.87 1† (3)
Hov1h C2/m Pr7Ni4Si4.5 0.78 0.88 1 (0.5) 0.90 1 (0.5)
Bedi I4 34 1.00 0.88 2 (1.5) 0.90 2 (1)
Hopsj R3 27 0.84 0.90 1 (0.5) 0.90 2 (1.5)
Tur10k P6322 17 0.89 0.87 1 (1) 0.89 1 (1)
Azetl Pca21 46 + 2Cl 1.01 0.84 1 (0.5) 0.85 1 (1)
No55m Fdd2 24 0.84 0.89 1 (1) 0.86 2 (3)
Cortisonn P212121 26 0.89 0.89 2 (0.5) 0.90 1 (0)
Loganino P212121 27 0.75 0.90 4 (1) 0.90 1 (0)
Suoap P212121 47 0.84 0.91 28 (32) 0.90 62 (75)

† Only one trial is required to develop the structure due to the scattering power of the fixed metal atom. References:
(a) Smith et al. (1975); (b) Sheldrick et al. (1993); (c) Butters et al. (1981); (d) Smith et al. (1981); (e) Irngartinger et al.
(1981); (f) Szeimies-Seebach et al. (1978); (g) Glover et al. (1983); (h) Hovestreydt et al. (1983); (i) Sheldrick et al. (1978);
(j) Jones et al. (1992); (k) Braekman et al. (1981); (l) Colens et al. (1974); (m) Sheldrick & Trotter (1978); (n) Declercq et
al. (1972); (o) Jones et al. (1980); (p) Oliver & Strickland (1984).



(ii) The value of �P is approximately two times that of �M at

atomic peak positions.

(iii) �P and �M are related by a factor close to 2.2.

Table 2 summarizes the application of � recycling to inten-

sity data of several crystal structures. Rather than being an

exhaustive test, the purpose of these calculations is to show

the viability of � recycling as a phasing method. For simplicity,

all refinements were carried out in P1, although, in principle,

nothing prevents us from using the space-group symmetry of

the compound as a constraint. All calculations were carried

out with a modified version of XLENS (Rius, 2011b) starting

from random phase values. Inspection of Table 2 clearly

indicates that both �P and �M recycling are efficient phasing

procedures. In most cases the number of necessary trials is

rather modest.

APPENDIX A
The value of dP at atomic positions

Let equation (4) be written in the form

�PðrÞ ¼
1

V

X
H

E2
H � E2

� �
EH

EH expð�i2�HrÞ: ð20Þ

If fj designates the normalized scattering factor of an arbitrary

j atom and if �’ and P0 are expressed in terms of their

respective peak distributions with j, k and l going from 1 to N,

then

�PðrÞ ¼
1

V

X
H

X
j

fjðEHÞ
�1
X

k

X
l 6¼k

fkfl

� exp i2�H rj þ rk � rl � r
� 	� �

¼
X

k

fk

V

X
H

ðEHÞ
�1 exp i2�H rk � rð Þ

� �
�
X

j

X
l 6¼k

fj fl exp i2�H rj � rl

� 	� �

¼
X

k

fk

V

X
H

exp i2�H rk � rð Þ
� �

� EH � fk exp �i2�Hrkð Þ exp i’Hð Þ
� �

: ð21Þ

Consequently, the �P value for an arbitrary rk atomic vector is

given by

�PðrkÞ ¼
fkNH

V
Eh i �

f 2
k

V

X
H

exp i’Hð Þ exp �i2�Hrkð Þ ð22Þ

where NH is the total number of reflections in the H sum. Since

it is known that the value of � at the location of an atomic

centre is �(rk) = fkNH/V, substitution of �(rk) and �’(rk) in

equation (22) yields

�PðrkÞ ¼ �ðrkÞ Eh i � f 2
k�’ðrkÞ; ð23Þ

from which the value of �P at rk can be estimated.

APPENDIX B
Variance of a density function expressed as Fourier
synthesis

If �(r) is a real continuous density function given by the

Fourier synthesis

�ðrÞ ¼
1

V

X
H

CH exp i�Hð Þ exp �i2�Hrð Þ; ð24Þ

where CH and �H are, respectively, the amplitude and asso-

ciated phase of the H Fourier term, the corresponding

variance can be computed with the expression

�2
� ¼

1

V

Z
V

�ðrÞ2 dV �
1

V

Z
V

�ðrÞ dV

2
4

3
5

2

¼ I1 � I2
2 : ð25Þ

By Parseval’s identity, integral I1 is equal to

I1 ¼
1

V2

X
H

C2
H: ð26Þ

On the other hand, integral I2 can be worked out to

I2 ¼
1

V2

X
H

CH expði�HÞ

Z
V

expð�i2�HrÞ dV; ð27Þ

wherein the integral vanishes for H 6¼ 0 and is equal to V for H

= 0, so that

I2
2 ¼

1

V2
C2

H¼0: ð28Þ

Finally, by making I1 � I2
2 , it follows that

�2
� ¼

1

V2

X
H 6¼0

C2
H: ð29Þ

The variance of � is given by equation (29) and only depends

on the squared amplitudes.
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